GCSE

Mathematics

Unit J560/06: Higher Tier Paper 6
General Certificate of Secondary Education

Mark Scheme for November 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2017

1. Annotations used in the detailed Mark Scheme.

Annotation	Meaning
\checkmark	Correct
x	Incorrect
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working (after correct answer obtained), provided method has been completed
M0	Method mark awarded 0
M1	Method mark awarded 1
M2	Method mark awarded 2
A1	Accuracy mark awarded 1
B1	Independent mark awarded 1
B2	Independent mark awarded 2
MR	Misread
SC	Special case
A	Omission sign

These should be used whenever appropriate during your marking.
The M, A, B etc annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks.
It is vital that you annotate these scripts to show how the marks have been awarded.
It is not mandatory to use annotations for any other marking, though you may wish to use them in some circumstances.

Subject-Specific Marking Instructions

2. \mathbf{M} marks are for using a correct method and are not lost for purely numerical errors.
\mathbf{A} marks are for an accurate answer and depend on preceding \mathbf{M} (method) marks. Therefore M0 A1 cannot be awarded.
B marks are independent of \mathbf{M} (method) marks and are for a correct final answer, a partially correct answer, or a correct intermediate stage.
SC marks are for special cases that are worthy of some credit.
3. Unless the answer and marks columns of the mark scheme specify \mathbf{M} and \mathbf{A} marks etc, or the mark scheme is 'banded', then if the correct answer is clearly given and is not from wrong working full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, ie incorrect working is seen and the correct answer clearly follows from it.
4. Where follow through (FT) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word their for clarity, eg FT $180 \times\left(\right.$ their ' 37 ' +16), or FT $300-\sqrt{ }\left(\right.$ their $\left.{ }^{\prime} 5^{2}+7^{2 \prime}\right)$. Answers to part questions which are being followed through are indicated by eg FT $3 \times$ their (a).

For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.
5. Where dependent (dep) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.
6. The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- cao means correct answer only.
- figs 237, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point eg $237000,2.37,2.370,0.00237$ would be acceptable but 23070 or 2374 would not.
- isw means ignore subsequent working (after correct answer obtained).
- nfww means not from wrong working.
- oe means or equivalent.
- rot means rounded or truncated.
- \quad seen means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line,
even if it is not in the method leading to the final answer.
- soi means seen or implied.

7. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise, indicated for example by the instruction 'mark final answer'.
8. As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).
9. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for \mathbf{A} and \mathbf{B} marks. Deduct 1 mark from any \mathbf{A} or \mathbf{B} marks earned and record this by using the MR annotation. M marks are not deducted for misreads.
10. Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75 , which is seen in the working. The candidate then rounds or truncates this to $15.8,15$ or 16 on the answer line. Allow full marks for the 15.75.
11. If the correct answer is seen in the body and the answer given in the answer space is a clear transcription error allow full marks unless the mark scheme says 'mark final answer' or 'cao'. Place the annotation \checkmark next to the correct answer.

If the answer space is blank but the correct answer is seen in the body allow full marks. Place the annotation \checkmark next to the correct answer.
If the correct answer is seen in the working but a completely different answer is seen in the answer space, then accuracy marks for the answer are lost. Method marks would still be awarded. Use the M0, M1, M2 annotations as appropriate and place the annotation \times next to the wrong answer.
12. Ranges of answers given in the mark scheme are always inclusive.
13. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.
14. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

Question		Answer	Marks	Part marks and guidance	
1	(a)	200	2	B1 for 50 or 150 soi	Eg. answer 500 or 275 with (5×10) $+\ldots$ seen
	(b)	$a=\frac{2(s-u t)}{t^{2}} \mathrm{oe}$	2	M1 for $s-u t=1 / 2 a t^{2}$	
2		30 November	3	B2 for 21 identified as LCM or answer 30 OR M1 for listing at least four multiples of 3 and at least three multiples of 7 OR M1 for listing/identifying at least four dates for running and at least three dates for cycling	$\begin{aligned} & 3,6,9,12,15,18,21, \ldots \\ & 7,14,21, \ldots \\ & \\ & 12,15,18,21, \ldots \\ & 16,23,30, \ldots \end{aligned}$
3	(a)	5.34	4	B1 for 1.5, 4.5, 7.5, 10.5, 13.5 M1FT for $1.5 \times 6 \quad 4.5 \times 10 \quad 7.5 \times 6$ $10.5 \times 2 \quad 13.5 \times 1$ soi $9,45,45,21,13.5$ or 133.5 M1 for their $133.5 \div 25$	At least 4 midpoints correct FT midpoints or either end of range values consistently used Allow one numerical error Four correct products or 133.5 imply B1 and M1
	(b)	Exact times for each customer are not recorded oe	1		Do not accept, "Because the midpoint is used" or comments on the method used.

Question		Answer	Marks	Part marks and guidance	
4	(a)	$\begin{aligned} & \frac{12}{28}=\frac{3}{7} \\ & \text { or } \\ & \frac{3}{7} \text { of } 28=12 \\ & \text { or } 12 \div 28=\frac{3}{7} \\ & \hline \end{aligned}$	1		$\begin{aligned} & \frac{\text { Alternative }}{12 \div 28=0.428571 \ldots} \\ & \text { and } \\ & 3 \div 7=0.428571 \ldots \end{aligned}$
	(b)	Integer from 23000 to 23334	2	M1 for $10000 \div \frac{3}{7}$ oe If M0 then SC1 for figs 2333... seen	Accept integer from 23000 to 24000 after M1
	(c)	The growing conditions on the farm may be different to the garden oe or Sample too small oe	1		Mere reference to factors that affect growth is insufficient
5	(a)	42	2	M1 for $\frac{1.47 \times 10^{7}}{3.5 \times 10^{5}}$ oe If 0 scored SC1 for figs 42 in answer	$\text { Eg. } \frac{14700000}{350000}$
	(b)	$4.2[3 \ldots] \times 10^{9}$	3	B2 for 4233600000 oe as answer or M1 for their $1.47 \times 10^{7} \times 288$ If 0 scored SC1 for figs 423[...] in answer	$\text { Eg. } 423 .[36] \times 10^{7}$ their 1.47×10^{7} converted from info in (a)

Question			Answer			Marks	Part marks and guidance	
	(c)	(i)	6450			3	B2 for 6447 to 6448 or M1 for $\frac{1.47 \times 10^{7}}{(152 \times 15)}$ oe or figs 6447 in answer	May be in stages. NB: $152 \times 15=2280$
		(ii)	Each mac of sweets or There or Machin or All mac oe	e ma no br runnin es ru	the same amount downs oe t same rate oe the same time	1		
6	(a)	(i)	$\begin{array}{\|l\|} \hline \frac{1}{5} \text { of Bag } \\ \text { or } \\ \text { The ratio } \end{array}$	coun ed to	[are red] w in Bag B is 1:3	1 	Accept 1:4=$\frac{1}{5}$ Accept $\frac{1}{4}=1: 3$	Equivalents may be percentages or decimals Eg. Bag A: 20\% red, Bag B: 25\% red.
		(ii)	Correct a this.	er is Red 4 5	integer multiple of	3	B1 for (Bag A) yellow $=4 \times$ red and A total $=\mathrm{B}$ total B1 for (Bag B) yellow $=3 \times$ red If 0 scored SC2 for correct figures but transposed horizontally	$\begin{array}{ll} \hline 8 & 32 \\ 10 & 30 \end{array}$

Question		Answer	Marks	Part marks and guidance	
	(b)	20 nfww	3	B1 for two ratios equivalent to 3:4 M1 for their 15:20 reduced to (15-3):20 Alternative approach B1 for two fractions equivalent to $\frac{3}{7}$ M1 for their $\frac{15}{35}$ reduced to $\frac{15-3}{32}$	$6: 8,9: 12,12: 16,15: 20, \ldots$ their 15:20 any ratio but not $3: 4$ using equivalent fractions: $\text { Eg } \frac{6}{14} \text { or } \frac{9}{21} \text { or } \frac{12}{28} \text { or } \frac{15}{35}$ their $\frac{15}{35}$ any fraction but not $\frac{3}{7}$
7		3.5	4	$\text { M3 for } \frac{(629.20-520) \div 6}{520}[\times 100]$ OR B2 for 18.2[0] seen OR B1 for 109.2[0] seen and M1 for their 109.2[0] $\div 520[\times 100]$	

Question		Answer	Marks	Part marks and guidance	
9		216	4	M1 for $5 b=180$ oe and B1 for [b=] 36 and M1 for their $36+180$ or their 36×6 provided their answer would be between 180 and 270	$\text { Eg. } b+180=6 b$ soi by final answer
10		71000000 to 89000000 in figs or words people/year	and 1	M1 for attempt to find 'gradient' using figures from the graph $\text { e.g. }(7.4-2.6) \div(2015-1951)$	Could be in billions Eg. (7400000000-2600000000) -(2015-1951) For M1, condone incorrect conversion used consistently for both population figures.
11	(a)		2	B1 for $\frac{5}{9}$ and at least one fraction with denominator 8 for second card	

Question		Answer	Marks	Part marks and guidance	
	(b)	$\frac{5}{9} \text { oe }$	3	M2FT for $\left(\frac{4}{9} \times \frac{5}{8}\right)+\left(\frac{5}{9} \times \frac{4}{8}\right)$ oe OR M1FT for $\left(\frac{4}{9} \times \frac{5}{8}\right)$ or $\left(\frac{5}{9} \times \frac{4}{8}\right)$ oe soi by $\frac{20}{72}$ oe	FT their probabilities from (a)
12	(a)	5	1		
	(b)	$\begin{aligned} & (\mathrm{k}=) 5 \\ & (\mathrm{r}=) 1 \mathrm{nfww} \end{aligned}$	5	B1 for $206=41 k+r$ and B1 for $1031=206 k+r$ and M1 for $165 k=825$ and A1 for $k=5$ or $r=1$ If no or partial method shown, allow full marks for final answer correct	If $\mathbf{0}$ scored, allow SC2 for final correct answers interchanged Condone attempt to reduce to one variable by sub. or elim. With max of one error
13	(a)	1.4355 or 1.436 or 1.44	2	M1 for 16.5×87 possibly soi by figs 14355,1436 or 144	

Question		Answer	Marks	Part marks and guidance	
(b)		Yes (Trevor is correct) because Eg $220 \div 87^{3} \times 100^{3}=334 .[\ldots]$ or $334 \times 87^{3} \div 100^{3}=219.9 \ldots$ to 220	$\mathbf{3}$	M2 for $220 \div 87^{3} \times 100^{3}$ or $334 \times 87^{3} \div 100^{3}$ OR	
$\mathbf{1 4}$	(a)		$(34 \times 36)-(25 \times 45)=99$	B1 for 87^{3} or 658503 or 100^{3} or 1000000 soi	

Question		Answer	Marks	Part marks and guidance	
	(b)	Eg. $\begin{aligned} & \text { If } M=n \\ & L=(n-1)(n+1)=n^{2}-1 \\ & T=(n-10)(n+10)=n^{2}-100 \\ & L-T=\left(n^{2}-1\right)-\left(n^{2}-100\right)=99 \end{aligned}$	5	B2 for defining relative positions algebraically Eg. $n-1, n+1, n-10, n+10$ or B1 for at least two relative positions defined algebraically AND M2 for $[L=](n-1)(n+1)=n^{2}-1$ and $[T=](n-10)(n+10)=n^{2}-100$ or M1 for $[L=](n-1)(n+1)=\mathrm{n}^{2}-1$ or $[T=](n-10)(n+10)=n^{2}-100$ or $L-T=($ their $(n-1)(n+1)-$ (their $(n-10)(n+10))$ If $\mathbf{0}$ scored, allow SC1 for one further numerical example	Or equivalent algebraic representation of relative positions. Condone poor notation for B marks eg B2 for $n-1 \times n+1-n-10 \times$ n +10 For M marks, follow through allowed for working with their relative positions described algebraically as linear expressions: ie. - $L=$ Multiplication of their left and right expressions - $T=$ Multiplication of their top and bottom expressions M1 could be awarded by expressing their L - their T , even if incorrectly expanded M2 may be embedded
15		85π or 267[.0...]	3	M2 for $\pi \times 5 \times 12+\pi \times 5^{2}$ oe OR B1 for 60π or 25π or $188[.4 \ldots$] or 188.5 or $78\left[.5 \ldots\right.$] or $\pi \times 5^{2}$	

Question			Answer	Marks	Part marks and guidance	
16	(a)	(i)	b-a	1		
		(ii)	$\frac{1}{4}(\mathbf{b}-\mathbf{a}) \text { or } \frac{1}{4} \mathbf{b}-\frac{1}{4} \mathbf{a}$	1	FT from (a)(i)	
	(b)		$\overrightarrow{E F}=\overrightarrow{E B}+\overrightarrow{B F}=\frac{1}{4}(\mathbf{b}-\mathbf{a})+\frac{1}{2} \mathbf{b}$ leading to $\frac{1}{4}(3 \mathbf{b}-\mathbf{a})$ as given.	2	M1 for their part (a)(ii) $+\frac{1}{2} \mathbf{b}$ oe	(a)(ii) must be in terms of \mathbf{a} and \mathbf{b}
	(c)		$\overrightarrow{A G}=\frac{3}{2} \mathbf{b}-\frac{1}{2} \mathbf{a}$ $\overrightarrow{A G}=2 \overrightarrow{E F}$ oe so are parallel.	3	$\mathbf{B 2}$ for $\overrightarrow{A G}=\frac{3}{2} \mathbf{b}-\frac{1}{2} \mathbf{a}$ or $\mathbf{M 1}$ for $\mathbf{b}+\frac{1}{2}$ (their part (a)(i)) oe	Allow vectors found in reverse throughout eg. $\overrightarrow{G A}$ instead of $\overrightarrow{A G}$ Condone "AG and EF are multiples of each other" Full marks dependent on both AG and $E F$ in correct simplified forms
17	(a)		$x^{2}+y^{2}=100$ oe	1		
	(b)		$8^{2}+(-6)^{2}=100$, so it's on the circle oe	2	M1 for $8^{2}+([-] 6)^{2}$ seen or for substituting $x=8$ and $y=-6$ into their part (a)	Alternative using Pythagoras $\sqrt{\sqrt{8^{2}+6^{2}}}=10$ their part (a) must be an equation in both x and y.

Question		Answer	Marks	Part marks and guidance	
	(c)	$3 y-4 x+50=0$ oe	5	B2 for [tangent gradient $=] \frac{4}{3}$ oe or M1 for $\pm \frac{6}{8}$ or $\pm \frac{8}{6}$ oe AND M2 for $y+6=$ their $\frac{4}{3}(x-8)$ oe or M1 for $y=$ their $\frac{4}{3} x+{ }^{\prime} c$ '	Equivalents include: $y=\frac{4}{3} x-\frac{50}{3}$ Condone decimals with at least 2 decimal places rot: $\text { Eg. } y=1.33 x-16.67$ Equivalent for $\mathbf{M} \mathbf{2}$ includes $y=$ their $\frac{4}{3} x+c$ and then attempt to find c by substituting in $y=-6$ and $x=8$
18	(a)	$y \leq 2$ $y \geq-2 x+18 \text { oe }$	1 and 3	B1 for ['gradient'=] -2 soi and M1 for suitable method to find equation of line eg. $y-8=($ their -2$) \times(x-5)$ or $y-2=($ their -2$) \times(x-8)$	If both inequalities are wrong way round, condone once (max penalty 1 mark) Or M1 for $y=$ their $-2 x+c$ with a point from the line substituted in to find c For M1 allow use of an inequality symbol in place of =
	(b)	$y=6$ shown as a solid line and correct region shaded	2	B1 for line drawn at $y=6$ OR B1 for correct squares shaded but no line	Accept dashed line for B1

Question	Answer	Marks	Part marks and guidance	
(c)	$\frac{8}{5} \text { oe }$	5	M1 for $\frac{1}{2} \times 4 \times(8+6)$ soi by 28 M1 for $\frac{1}{2} \times 4 h=$ their $28-23 \mathrm{oe}$ A1 for [$h=\mathrm{m} 2.5$ AND M1 for [$k=$] $4 \div$ their 2.5 oe Alternative method M1 for $\frac{1}{2} \times 4 \times\left(8+t^{\prime} t^{\prime}\right)$ M1 for their $\frac{1}{2} \times 4 \times\left(8+t^{\prime}\right)=23$ oe A1 for $[t=] 3.5$ AND M1 for [$k=] 4 \div(6-$ their 3.5$)$ oe	' h ' is 'top of triangle' ' t ' is 'top of trapezium' Must be a trapezium

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Assessment
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

